Developing Technology Solutions to Support Academic Career Planning and Student Scheduling

Magdy Helal Sandra Archer

University Analysis \& Planning Support
University of Central Florida

Robert L. Armacost

Higher Education Assessment and Planning Technologies
Presentation available online: http://uaps.ucf.edu

Goals for Presentation

- Describe the need for program of study planning and class scheduling assistance for students and advisors
- Describe how computerized modeling and optimization tools can form a potential solution
- Demonstrate how SAS and SAS/OR can be used for customized model generation and solutions of program of study planning models
- Demonstrate how Excel and Excel Solver can be used to test class scheduling feasibility and build alternative schedules
- Highlight the potentials for integration and further developments

The University of Central Florida

- Established in 1963 (first classes in 1968), Metropolitan Research University
- Grown from 1,948 to 46,907 students in 38 years
\square 39,679 undergrads and 7,228 grads
$\square 11$ colleges
$\square 12$ regional campus sites
$\square 6{ }^{\text {th }}$ largest public university in U.S.
$\square 92 \%$ of lower division and 67% of upper division students are full-time
- Carnegie classification:
" Undergraduate: Professions plus arts \& sciences, high graduate coexistence
- Graduate: Comprehensive doctoral (no medical) [Medical college approved]
- 95 Bachelors, 97 Masters, 3 Specialist, and 28 PhD programs
- Largest undergraduate enrollment in state
- Approximately 1,300 full-time faculty; 9,800 total employees

Delayed Graduation Problem

Delayed Graduation Problem

- Computerized support tools: Planning and Scheduling
- A function only of how well-designed tools are
- Can reveal current inefficiencies and assist fixing them

Program Planning \& Class Scheduling System

```
1. Program & Course Requirements
2. Student Preferences
3. Five year departmental plan
```



```
1. Program of Study
2. Semester-Class assignment
3. University Master Class Schedule
```


3. Alternative Class Schedules

```


\section*{Components of Optimization Model}
- Decision variables: activities that the decision maker can control
- Constraints: restrictions on the decision variables
- Non-negativity constraints: decision variables must not be negative
- Objective function: a performance measurement for the entire system to be maximized or minimized while satisfying all constraints
- Example applications: production planning, scheduling, trim-loss problems, product-mix, transportation, blending and financial portfolio selection

\section*{Program Planning \& Class Scheduling System}


\section*{Assisting Students in Program of Study Planning}
- Current planning tools:
\(\square\) Generic flow-chart containing the path to graduation for a typical student
\(\square\) Five year course plan describes when all classes are planned to be offered
- Does not address program disruptions
- Does not address unique academic situations

\section*{Program of Study Optimization Model}
- Help students determine the fastest route to graduation
- Account for factors such as:
\(\square\) Desired number of credit hours per semester
\(\square\) Prerequisites ordering
\(\square\) Transfer-in credits
\(\square\) Semesters preference (summer classes)
\(\square\) Starting semester (students entering in the spring or summer)
\(\square\) Selection among a set of elective courses

\section*{Practical Considerations}
- Data requirements
\(\square\) Need good schedule of planned course offerings over planning horizon
\(\square\) Need good list of course co-requisites and prerequisites
- Solution software
\(\square\) Any linear optimization solver will work
- Excel "Solver"
- SAS/OR
\(\square\) Challenge is data handling and accuracy

\section*{SAS/OR}
- Full capability to handle integer linear programs
- Capability of developing input data files in required format
- Use requires understanding of linear optimization and SAS language
- Automatic data file generation provides opportunity for creating an online tool for student use

\section*{Conceptual Considerations}
- Objective function
\(\square\) Minimize time to completion-courses should be completed in earlier semesters
\(\square\) Minimize total number of courses taken
- Decision variables
\(\square\) Describe whether a specified course is scheduled in a semester
- \(x_{i j} \epsilon\{1,0\}=1\) if course \(i\) is assigned to semester \(j ; 0\) otherwise
- \(y_{j} \in\{1,0\}=1\) if any course is assigned in semester \(j ; 0\) otherwise
\(\square\) "Binary" program = decision variables are binary

\section*{Objective Function}
\[
\min \sum_{j=1}^{t} w_{j} y_{j}+\sum_{i=1}^{c} \sum_{j=1}^{t} x_{i j}
\]
\[
\begin{array}{llll}
1 y_{1}+ & 2 y_{2}+ & \cdots & +\mathrm{ty}_{\mathrm{t}} \\
+\mathrm{x}_{11} & +\mathrm{x}_{12} & \cdots & +\mathrm{x}_{\mathrm{ij}} \\
\hline
\end{array}
\]
- \(j=1,2 \ldots t ; w j=1,2, \ldots t ; i=1,2, \ldots, c\)
- Constraint: Integer (binary) constraints on the decision variables: \(\mathrm{x}_{\mathrm{ij}} \in\{1,0\}\) and \(\mathrm{y}_{\mathrm{j}} \in\{1,0\}\)

\section*{Constraints}
- A: Semester assignment \(\sum_{i=1}^{c} x_{i j} \leq M y_{j} \quad \forall j\)
- B: Course non-repetition \(\sum_{j=1}^{t} x_{i j} \leq 1 \quad \forall i\)
- C: Courses per semesters limit \(\sum_{i=1}^{c} x_{i j} \leq n \quad \forall j\)
- D: Required course assignments \(\sum_{j=1}^{t} x_{r j}=1 \quad \forall r \in R\)
- E: Elective course assignments \(\sum_{i \in N} \sum_{j=1}^{t} x_{i j} \geq k\)
- F: Prerequisite ordering \(x_{a n} \leq \sum_{i=1}^{n-1} x_{b i} \quad x_{a 1}<x_{b 1}\)
- G: Comply with planned course offering \(\quad x_{a b}=0 \quad x_{a b} \notin I(j)\)

\section*{Developing the Model}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & j = & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \\
\hline & & Sum & Fall & Sp & Sum & Fall & Sp & Sum & Fall & Sp & Sum & Total \\
\hline \(\mathrm{i}=\) & Course Title & 05 & 05 & 06 & 06 & 06 & 07 & 07 & 07 & 08 & 08 & Assigned \\
\hline 1 & Lead Scholars & 1 & 0 & 0 & & 0 & 0 & & 0 & 0 & & 1 \\
\hline 2 & Engineering Economic Analysis & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
\hline 3 & Manufacturing Systems Engr. & & & 0 & & & & & & 0 & & 0 \\
\hline 4 & Computer Control of Mfg Sys & & & 0 & & & 0 & & & & & 0 \\
\hline 5 & Seminar in IE Doctoral Research & & & & & 1 & & & 0 & & & 1 \\
\hline 6 & Systems Safety Engr. \& Mgmt. & & & & & & 0 & & & & & 0 \\
\hline 7 & Biomechanics & & & 0 & & & 0 & & & 0 & & 0 \\
\hline 8 & Human-Computer Interaction & & 1 & & & 0 & & & 0 & & & 1 \\
\hline 9 & Industrial Hygiene & & & & & & 0 & & & & & 0 \\
\hline 10 & Work Physiology & & 0 & & & 0 & & & 0 & & & 0 \\
\hline & Total Assigned & 2 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 5 \\
\hline & \(\mathrm{y}_{\mathrm{j}}=\) & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & \\
\hline & \(\mathbf{w}_{\mathrm{j}}=\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \\
\hline
\end{tabular}
- Example: 25 course assignments over 15 semesters \(=25^{*} 15+15=390\) decision variables

\section*{SAS/OR: Requires MPS Format}
- MPS format required
\(\square\) Input format that is common to several linear programming software packages
- Sparse MPS Format for Flexibility


\section*{User Interface}


\section*{Ordering Prerequisites Increased Time to Degree}
- Example with prerequisite ordering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fall 05 & Spring 06 & Sum 06 & Fall 06 & Spring 07 & Sum 07 & Fall 07 & Spring 08 \\
\hline EML 5060 & & EML 5713 & & EML 5271 & & & EML 6067 \\
\hline EML 5211 & & & & EML 5237 & & & EAS 6138 \\
\hline EML 5402 & & & & EML 5532 & & & EAS 6185 \\
\hline EML 6971 & & & & & & & EML 6085 \\
\hline
\end{tabular}
- Without prerequisite ordering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fall 05 & Spring 06 & Sum 06 & Fall 06 & Spring 07 & Sum 07 & Fall 07 & Spring 08 \\
\hline EML 5060 & EML 5271 & EML 5025 & & & & & \\
\hline EML 5211 & EML 6067 & EML 5532 & & & & & \\
\hline EML 6547 & EML 6725 & EML 5713 & & & & & \\
\hline EML 6712 & EML 5131 & EML 6971 & & & & & \\
\hline
\end{tabular}

\section*{In Summary: Program of Study Planning}
- This demonstrates a prototype SAS tool
\(\square\) Accepts parameters
\(\square\) Generates customized linear program MPS data for solving with SAS/OR procedures
- Increase the flexibility of the user input interface
\(\square\) Enter preferences for sets of electives over others
\(\square\) User-friendly interface that checks parameters and prompts for corrections
- Producing several optional programs of study
\(\square\) May be more than one optimal solution
- May be used for course offering planning

\section*{Program Planning \& Class Scheduling System}


\section*{Scheduling}
- Inputs:
\(\square\) POS: which courses in which semesters
\(\square\) University class schedule
- Objective:
\(\square\) Test feasibility of scheduling the POS semesters
\(\square\) Identify a feasible schedule for a given program in a given semester
- Outputs:
\(\square\) Feasibility reports
\(\square\) Alternative semester schedules

\section*{Technical Challenge}
- Biology:
\(\square\) BSC 2010: 3 lecture sections, 22 lab sections
\(\square\) ENC 1101: 110 lecture sections
\(\square\) MAC 2311: 22 lecture section
- 2,555,520 combinations !!
- Scheduling approaches
\(\square\) Optimization: find a feasible solution for a particular "setcovering" 0-1 integer program
\(\square\) Enumeration: develop a feasible schedule by constructing a schedule adding one course at a time

\section*{Process Flow - Optimization}


\section*{University Master Schedule}
- Download from PeopleSoft by a SAS code every 2 hours
- Made available to advisors on a webpage
- Imported to Excel as input to Integer Programming model


Program Requirement Data
- Based on POS outputs


\section*{Optimization-based Scheduler}
- Student class schedule by a "set-covering" problem
\(\square\) Find the class sections that will "cover" the "set" of program requirements (courses)
- Constraints
\(\square\) No two sections can be scheduled at the same time
\(\square\) Exactly one section of each course must be scheduled during a week
\(\square\) Maximum of five hours of classes may be scheduled in a given day

\section*{Excel-Based IP Model}
\[
\begin{array}{|l}
\begin{array}{|l|}
\hline \text { Set } Z=1 \\
\text { S.t. } \\
\hline \\
\\
\\
\\
\sum_{i} y_{i j} \leq 7 \\
\\
\\
\sum_{i j} x_{l k} \leq 10 \\
\hline
\end{array} \\
\hline
\end{array}
\]

\section*{\(\square\) No more than 7 courses}
\(\square 1\) section per course
\(\square 5\) hours a day at most
\[
\begin{aligned}
& y_{i j}= \begin{cases}1 & \text { Section i of course } \mathrm{j} \text { scheduled } \\
0 & \text { Otherwise }\end{cases} \\
& x_{l k}= \begin{cases}1 & \text { Slot } 1 \text { of day k used } \\
0 & \text { Otherwise }\end{cases}
\end{aligned}
\]
\(\square y_{i j}\) : Section i of course j
\(\square x_{l k}\) : Time slot l in day k

\section*{Excel Solver Setup}
- Columns correspond to class sections offered at different times
- Rows correspond to half-hour time slots for each day of the week
- Cell values \(=1\) if class section is offered at that time or \(=0\) if section is not offered at that time
- Decision variable row cells = 1 if that section of the course is scheduled and \(=0\) otherwise
- SOLVER Add-in
\(\square\) Tools > Solver (go to Tools > Add-ins and check "Solver Add-in" if not loaded)
\(\square\) "Target cell" is the objective to be optimized
\(\square\) "Changing cells" are the decision variables
\(\square\) "Constraints" are the conditions to be satisfied

\section*{Solver Setup}
Microsoft Excel-Solver Template.xls

吅回 : Arial



\section*{UCF-CS GUIs \& Outputs}


\section*{Solver Pros and Cons}
- Pros
\(\square\) Generates feasible solutions
\(\square\) Modifiable to add other constraints (e.g., minimum time between classes, exclude a certain day)
\(\square\) Relatively easy to customize output
- Cons
\(\square\) Requires mathematical understanding to set up
\(\square\) Requires careful mapping of class schedule data
\(\square\) Relatively long execution times
\(\square\) Potential automation connection problems
\(\square\) Need to "trick" the set up to generate alternate schedules

\section*{Enumeration Approach}
- Potential for reducing processing time
- Use existing data structure
- Constructive generation of student class schedule
\(\square\) Arrange courses assendingly by number of sections
\(\square\) Schedule most restrictive class first
\(\square\) Add next most restrictive class while satisfying time conflict constraints
- Number of feasible schedules is limited by the amount of time to be spent or number specified in advance
- Output format is same as for Solver

\section*{Enumeration Approach}


\section*{Enumeration Pros and Cons}
- Pros
\(\square\) Easier to set up than Solver
\(\square\) Faster (for current problem)
\(\square\) Less automation connection problems
- Cons
\(\square\) Rigid structure—must be recoded for customized results
\(\square\) Must be run until finished to get any solutions
\(\square\) Limited number of feasible solutions as coded

\section*{SAS vs. Excel}
- POS Planner used SAS and Excel
- UCF-CS used Excel
- Both used IP
- SAS offers more flexibility and tools to manipulate data
- SAS generates the optimization model AND solves it
- SAS lacks ease of use in reporting and presenting capabilities
- Excel offers user interfaces and presentation capabilities
- Excel communicates with other Office and Windows applications
- Solver is rigid and requires complicated Excel preparation
- SAS and Excel work together smoothly

\section*{Contact Information}
- Dr. Robert L. Armacost, Higher Education Assessment and Planning Technologies
\(\square\) armacost@mail.ucf.edu
- Ms. Sandra Archer, University of Central Florida
\(\square\) archer@mail.ucf.edu; http://uaps.ucf.edu
- Mr. Magdy Helal, University of Central Florida
\(\square\) mhelal@mail.ucf.edu

Presentation available online: http://uaps.ucf.edu```

