

Developing Technology Solutions to Support Academic Career Planning and Student Scheduling

Magdy Helal Sandra Archer University Analysis & Planning Support University of Central Florida

**Robert L. Armacost** Higher Education Assessment and Planning Technologies

Presentation available online: http://uaps.ucf.edu

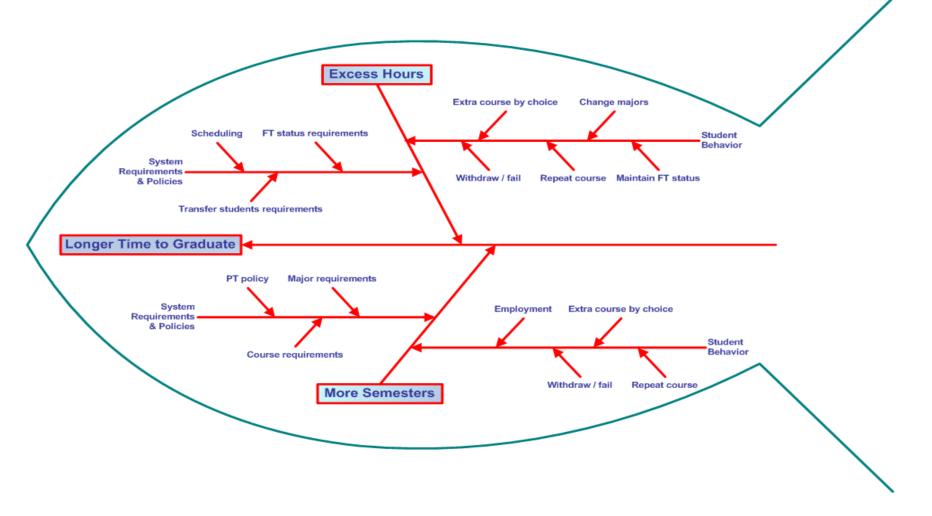




# Goals for Presentation

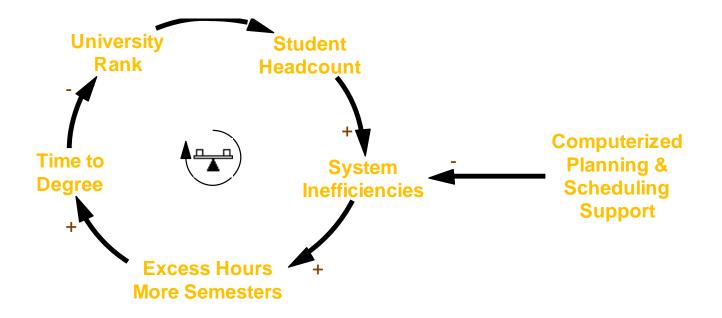
- Describe the need for program of study planning and class scheduling assistance for students and advisors
- Describe how computerized modeling and optimization tools can form a potential solution
- Demonstrate how SAS and SAS/OR can be used for customized model generation and solutions of program of study planning models
- Demonstrate how Excel and Excel Solver can be used to test class scheduling feasibility and build alternative schedules
- Highlight the potentials for integration and further developments




# The University of Central Florida

Stands for Opportunity

- Established in 1963 (first classes in 1968), Metropolitan Research University
- Grown from 1,948 to 46,907 students in 38 years
  - □ 39,679 undergrads and 7,228 grads
  - □ 11 colleges
  - □ 12 regional campus sites
  - □ 6<sup>th</sup> largest public university in U.S.
  - □ 92% of lower division and 67% of upper division students are full-time
- Carnegie classification:
  - Undergraduate: Professions plus arts & sciences, high graduate coexistence
  - Graduate: Comprehensive doctoral (no medical) [Medical college approved]
- 95 Bachelors, 97 Masters, 3 Specialist, and 28 PhD programs
- Largest undergraduate enrollment in state
- Approximately 1,300 full-time faculty; 9,800 total employees

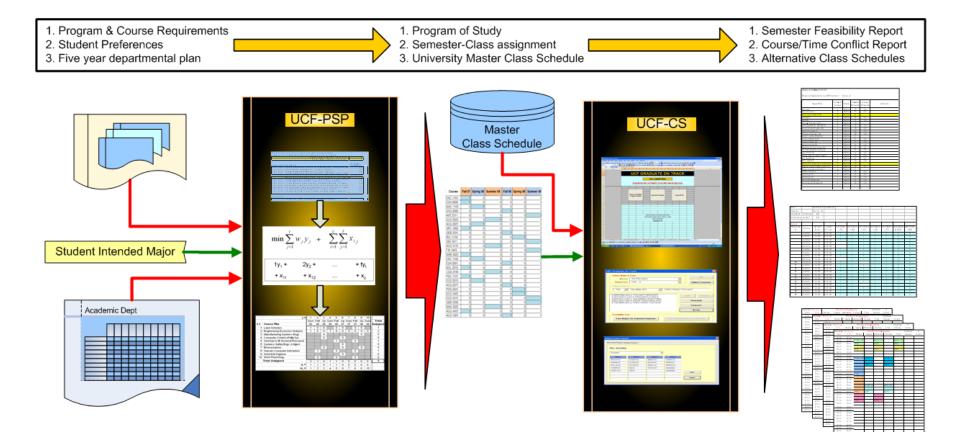



# **Delayed Graduation Problem**





# **Delayed Graduation Problem**



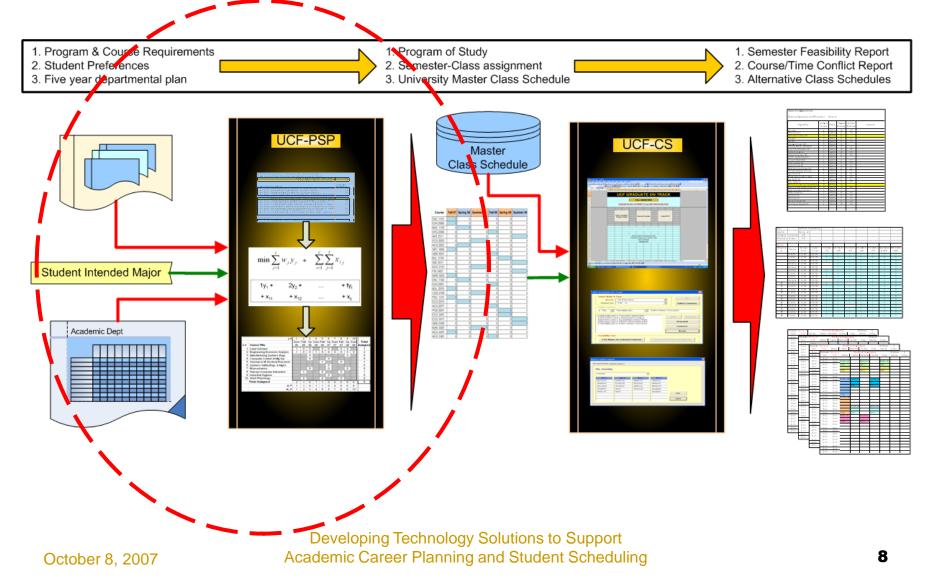

- Computerized support tools: Planning and Scheduling
- A function only of how well-designed tools are
- Can reveal current inefficiencies and assist fixing them

Octob) e2(38) 72007



### Program Planning & Class Scheduling System






# **Components of Optimization Model**

- <u>Decision variables</u>: activities that the decision maker can control
- <u>Constraints</u>: restrictions on the decision variables
- Non-negativity constraints: decision variables must not be negative
- <u>Objective function</u>: a performance measurement for the entire system to be maximized or minimized while satisfying all constraints
- Example applications: production planning, scheduling, trim-loss problems, product-mix, transportation, blending and financial portfolio selection



### Program Planning & Class Scheduling System





# Assisting Students in Program of Study Planning

- Current planning tools:
  - Generic flow-chart containing the path to graduation for a typical student
  - Five year course plan describes when all classes are planned to be offered
- Does not address program disruptions
- Does not address unique academic situations



# Program of Study Optimization Model

- Help students determine the fastest route to graduation
- Account for factors such as:
  - Desired number of credit hours per semester
  - Prerequisites ordering
  - □ Transfer-in credits
  - Semesters preference (summer classes)
  - Starting semester (students entering in the spring or summer)
  - Selection among a set of elective courses



# **Practical Considerations**

#### Data requirements

- Need good schedule of planned course offerings over planning horizon
- □ Need good list of course co-requisites and prerequisites

#### Solution software

- □ Any linear optimization solver will work
  - Excel "Solver"
  - SAS/OR
- □ Challenge is data handling and accuracy



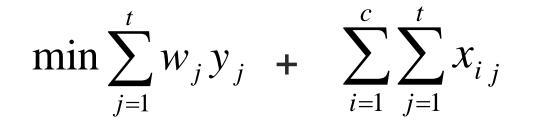
# SAS/OR

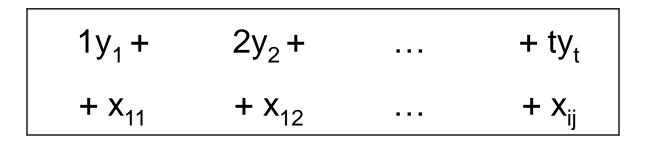
- Full capability to handle integer linear programs
- Capability of developing input data files in required format
- Use requires understanding of linear optimization and SAS language
- Automatic data file generation provides opportunity for creating an online tool for student use



# **Conceptual Considerations**

#### Objective function


- Minimize time to completion—courses should be completed in earlier semesters
- □ Minimize total number of courses taken
- Decision variables


Describe whether a specified course is scheduled in a semester

- $x_{ij} \in \{1,0\} = 1$  if course i is assigned to semester j; 0 otherwise
- y<sub>j</sub> ε {1,0} = 1 if any course is assigned in semester j; 0 otherwise
- "Binary" program = decision variables are binary



# **Objective Function**





Constraint: Integer (binary) constraints on the decision variables: x<sub>ii</sub> ε {1,0} and y<sub>i</sub> ε {1,0}

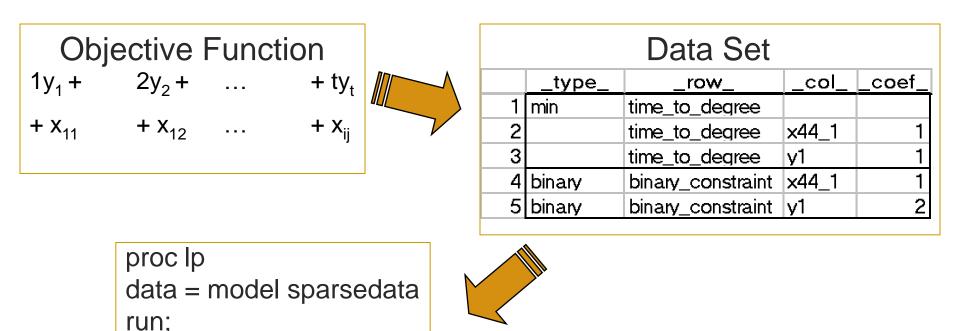


# Constraints

- A: Semester assignment  $\sum_{i=1}^{L} x_{ij} \leq My_j \quad \forall j$ B: Course non-repetition  $\sum_{i=1}^{i} x_{ij} \le 1 \quad \forall i$ • C: Courses per semesters limit  $\sum_{i=1}^{c} x_{ij} \le n \quad \forall j$ **D:** Required course assignments  $\sum_{i=1}^{t} x_{ri} = 1 \quad \forall r \in R$ • E: Elective course assignments  $\sum \sum x_{ij} \ge k$ • F: Prerequisite ordering  $x_{an} \le \sum_{i=1}^{n-1} x_{bi}$   $x_{a1} < x_{b1}$
- G: Comply with planned course offering  $x_{ab} = 0$   $x_{ab} \notin I(j)$



# Developing the Model


|     | j =                             | 1   | 2    | 3  | 4   | 5    | 6  | 7   | 8    | 9  | 10  |          |
|-----|---------------------------------|-----|------|----|-----|------|----|-----|------|----|-----|----------|
|     |                                 | Sum | Fall | Sp | Sum | Fall | Sp | Sum | Fall | Sp | Sum | Total    |
| i = | Course Title                    | 05  | 05   | 06 | 06  | 06   | 07 | 07  | 07   | 08 | 08  | Assigned |
| 1   | Lead Scholars                   | 1   | 0    | 0  |     | 0    | 0  |     | 0    | 0  |     | 1        |
| 2   | Engineering Economic Analysis   | 1   | 0    | 0  | 1   | 0    | 0  | 0   | 0    | 0  | 0   | 2        |
| 3   | Manufacturing Systems Engr.     |     |      | 0  |     |      |    |     |      | 0  |     | 0        |
| 4   | Computer Control of Mfg Sys     |     |      | 0  |     |      | 0  |     |      |    |     | 0        |
| 5   | Seminar in IE Doctoral Research |     |      |    |     | 1    |    |     | 0    |    |     | 1        |
| 6   | Systems Safety Engr. & Mgmt.    |     |      |    |     |      | 0  |     |      |    |     | 0        |
| 7   | Biomechanics                    |     |      | 0  |     |      | 0  |     |      | 0  |     | 0        |
| 8   | Human-Computer Interaction      |     | 1    |    |     | 0    |    |     | 0    |    |     | 1        |
| 9   | Industrial Hygiene              |     |      |    |     |      | 0  |     |      |    |     | 0        |
| 10  | Work Physiology                 |     | 0    |    |     | 0    |    |     | 0    |    |     | 0        |
|     | Total Assigned                  | 2   | 1    | 0  | 1   | 1    | 0  | 0   | 0    | 0  | 0   | 5        |
|     | y <sub>j</sub> =                | 1   | 1    | 0  | 1   | 1    | 0  | 0   | 0    | 0  | 0   |          |
|     | <b>w</b> <sub>j</sub> =         | 1   | 2    | 3  | 4   | 5    | 6  | 7   | 8    | 9  | 10  |          |

#### Example: 25 course assignments over 15 semesters = 25\*15 + 15 = 390 decision variables



# SAS/OR: Requires MPS Format

- MPS format required
  - Input format that is common to several linear programming software packages
- Sparse MPS Format for Flexibility



| oor Intortooo                                                |        | Lange    |          |
|--------------------------------------------------------------|--------|----------|----------|
| ser Interface                                                |        | Input    |          |
| Master of Science in Mechanical Engineering                  |        |          | ]        |
| Computer-Aided Mechanical Engineering Track                  |        |          |          |
| Enter Total Classes Required:                                | 12     | _        |          |
| Enter Max classes per term:                                  | 4      |          |          |
|                                                              | Course | Solution |          |
| Required Courses:                                            | Number | Semester | Solution |
| EML 5060 Mathematical Methods in Mechanical, Materials an    | 44     | 1        |          |
| EML 5211 Continuum Mechanics (3 credit hours)                | 49     | 1        |          |
| EML 5271 Intermediate Dynamics (3 credit hours)              | 54     | 5        |          |
| EML 6067 Finite Elements in Mechanical, Materials and Aeros  | 72     | 8        |          |
| Enter # of courses from track specialty courses:             | 2      |          |          |
| EML 5237 Intermediate Mechanics of Materials (3 credit hours | 52     | 5        |          |
| EML 5025C Engineering Design Practice (3 credit hours)       | 43     | -        |          |
| EML 5532C Computer-Aided Design for Manufacture (3 credit I  | 60     | 5        |          |
| EML 6062 Boundary Element Methods in Engineering (3 credit   | 71     | -        |          |
| EML 6547 Engineering Fracture Mechanics in Design (3 credit  | 90     | -        |          |
| EML 6305C Experimental Mechanics (3 credit hours)            | 89     | -        |          |
| EML 6725 Computational Fluid Dynamics and Heat Transfer I    | 93     | -        |          |
|                                                              |        | -        |          |
| Electives                                                    |        |          |          |
|                                                              |        |          |          |

# Ordering Prerequisites Increased Time to Degree

#### Example with prerequisite ordering

| Fall 05  | Spring 06 | Sum 06   | Fall 06 | Spring 07 | Sum 07 | Fall 07 | Spring 08 |
|----------|-----------|----------|---------|-----------|--------|---------|-----------|
| EML 5060 |           | EML 5713 |         | EML 5271  |        |         | EML 6067  |
| EML 5211 |           |          |         | EML 5237  |        |         | EAS 6138  |
| EML 5402 |           |          |         | EML 5532  |        |         | EAS 6185  |
| EML 6971 |           |          |         |           |        |         | EML 6085  |

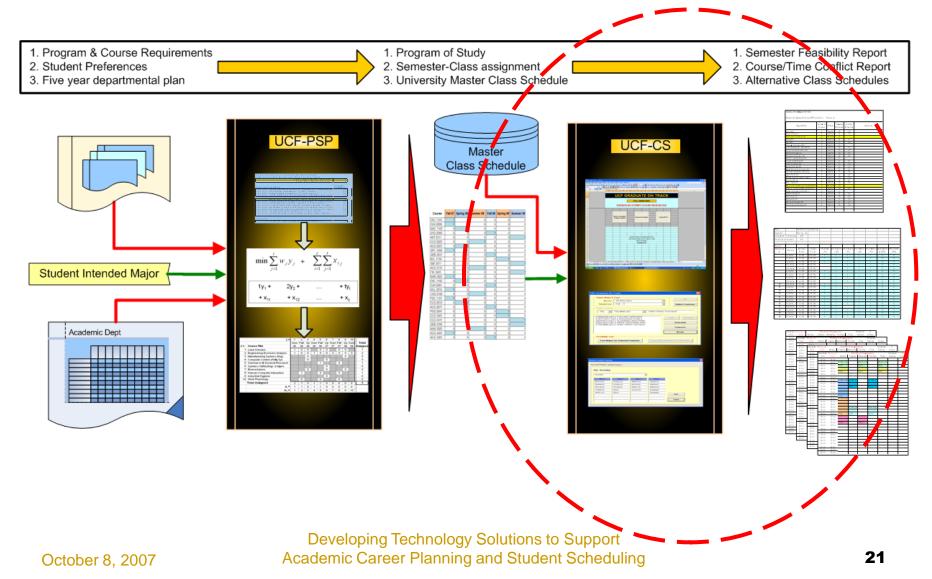
#### Without prerequisite ordering

| Fall 05  | Spring 06 | Sum 06   | Fall 06 | Spring 07 | Sum 07 | Fall 07 | Spring 08 |
|----------|-----------|----------|---------|-----------|--------|---------|-----------|
| EML 5060 | EML 5271  | EML 5025 |         |           |        |         |           |
| EML 5211 | EML 6067  | EML 5532 |         |           |        |         |           |
| EML 6547 | EML 6725  | EML 5713 |         |           |        |         |           |
| EML 6712 | EML 5131  | EML 6971 |         |           |        |         |           |



# In Summary: Program of Study Planning

#### This demonstrates a prototype SAS tool


- Accepts parameters
- Generates customized linear program MPS data for solving with SAS/OR procedures

#### Increase the flexibility of the user input interface

- Enter preferences for sets of electives over others
- User-friendly interface that checks parameters and prompts for corrections
- Producing several optional programs of study
  - □ May be more than one optimal solution
- May be used for course offering planning



### Program Planning & Class Scheduling System



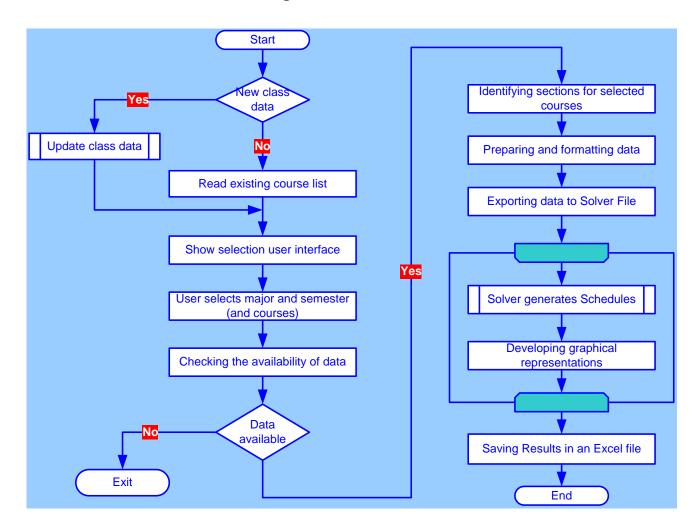


# Scheduling

- Inputs:
  - POS: which courses in which semesters
  - University class schedule
  - Objective:
    - □ Test feasibility of scheduling the POS semesters
    - Identify a feasible schedule for a given program in a given semester

#### Outputs:

- Feasibility reports
- Alternative semester schedules




# **Technical Challenge**

- Biology:
  - BSC 2010: 3 lecture sections, 22 lab sections
  - □ ENC 1101: 110 lecture sections
  - □ MAC 2311: 22 lecture section
- 2,555,520 combinations !!
- Scheduling approaches
  - Optimization: find a feasible solution for a particular "setcovering" 0-1 integer program
  - Enumeration: develop a feasible schedule by constructing a schedule adding one course at a time



# **Process Flow - Optimization**





# **University Master Schedule**

- Download from PeopleSoft by a SAS code every 2 hours
- Made available to advisors on a webpage
- Imported to Excel as input to Integer Programming model

| <b>N</b> | Aicrosoft Excel -              | GOT.xls         |                                       |                               |                                     |            |            |          |           |     |         |                       | _ 6 |
|----------|--------------------------------|-----------------|---------------------------------------|-------------------------------|-------------------------------------|------------|------------|----------|-----------|-----|---------|-----------------------|-----|
| : 2      | <u>F</u> ile <u>E</u> dit ⊻iew | Insert Format   | <u>T</u> ools <u>D</u> ata <u>S</u> A | S <u>W</u> indow <u>H</u> elp | Ado <u>b</u> e PDF                  |            |            |          |           |     | Туре    | e a question for help | - I |
| En       | 😼 🖬 🖪 🖪                        | a 🥙 🛍 🕽         | 6 🗈 🖹 • 🟈 🛛                           | n - (° -   🔍 Σ                | E + £= ⊉↓ Z↓                        | 100%       | - @ ]      | Security | A 🔆 📈 🛷   |     | <u></u> |                       |     |
| Ari      |                                |                 | Ū ≣≣≣                                 |                               |                                     |            |            | ,        |           | •   |         |                       | -   |
| -        | <br>M21 -                      | £~"N            | <u> </u>                              | Ψ /0 /                        | .00 ⇒.0   = <u>-</u> - = <u>-</u> - | ТШ - 🗹 - 📫 | - F        |          |           |     |         |                       |     |
|          | A                              | B               | С                                     | D                             | E                                   | F          | G          | Н        |           | J   | K       | L                     |     |
| 1        | SUBJECT                        | CATALOG_NB<br>R | course                                | timecode2                     | counter                             | COMPONENT  | START_TIME | END_TIME | Meet_Days | MON | TUES    | WED                   | Tŀ  |
| 2        | ACG                            | 2021            | ACG2021 LEC                           | 49                            | 1                                   | LEC        | 1:30 PM    | 4:20 PM  | F         | N   | N       | N                     | N   |
| 3        | ACG                            | 2021            | ACG2021 LEC                           | 134                           | 1                                   | LEC        | 6:00 PM    | 8:50 PM  | м         | Y   | N       | N                     | N   |
| 4        | ACG                            | 2021            | ACG2021 LEC                           | 190                           | 1                                   | LEC        | 10:30 AM   | 11:45 AM | MW        | Y   | N       | Y                     | N   |
| 5        | ACG                            | 2021            | ACG2021 LEC                           | 199                           | 1                                   | LEC        | 12:00 PM   | 1:15 PM  | MW        | Y   | N       | Y                     | N   |
| 6        | ACG                            | 2021            | ACG2021 LEC                           | 208                           | 1                                   | LEC        | 1:30 PM    | 2:50 PM  | MW        | γ   | N       | Υ                     | N   |
| 7        | ACG                            | 2021            | ACG2021 LEC                           | 514                           | 1                                   | LEC        | 12:00 PM   | 1:15 PM  | TR        | N   | Y       | N                     | Υ   |
| 8        | ACG                            | 2021            | ACG2021 LEC                           | 531                           | 1                                   | LEC        | 3:00 PM    | 4:15 PM  | TR        | N   | Y       | N                     | Υ   |
| 9        | ACG                            | 2021            | ACG2021 LEC                           | 532                           | 1                                   | LEC        | 3:00 PM    | 4:20 PM  | TR        | N   | Y       | N                     | Υ   |
| 10       | ACG                            | 2071            | ACG2071 LEC                           | 215                           | 1                                   | LEC        | 3:00 PM    | 4:15 PM  | MW        | Y   | N       | Y                     | N   |
| 11       | ACG                            | 2071            | ACG2071 LEC                           | 473                           | 1                                   | LEC        | 6:00 PM    | 8:50 PM  | Т         | N   | Y       | N                     | N   |
| 12       | ACG                            | 2071            | ACG2071 LEC                           | 522                           | 1                                   | LEC        | 1:30 PM    | 2:45 PM  | TR        | N   | Y       | N                     | Υ   |
| 13       | ACG                            | 2071            | ACG2071 LEC                           | 532                           | 1                                   | LEC        | 3:00 PM    | 4:20 PM  | TR        | N   | Y       | N                     | Υ   |
| 14       | ACG                            | 2071            | ACG2071 LEC                           | 624                           | 1                                   | LEC        | 6:00 PM    | 8:50 PM  | W         | N   | N       | Y                     | N   |
| 15       | ACG                            | 3131            | ACG3131 LEC                           | 29                            | 1                                   | LEC        | 10:30 AM   | 1:20 PM  | F         | N   | N       | N                     | N   |
| 16       | ACG                            | 3131            | ACG3131 LEC                           | 176                           | 1                                   | LEC        | 7:30 AM    | 8:50 AM  | MW        | Υ   | N       | Y                     | N   |
| 17       | ACG                            | 3131            | ACG3131 LEC                           | 184                           | 1                                   | LEC        | 9:00 AM    | 10:20 AM | MW        | Υ   | N       | Υ                     | N   |
| 18       | ACG                            | 3131            | ACG3131 LEC                           | 473                           | 1                                   | LEC        | 6:00 PM    | 8:50 PM  | Т         | N   | γ       | N                     | N   |
| 19       | ACG                            | 3131            | ACG3131 LEC                           | 506                           | 1                                   | LEC        | 10:30 AM   | 11:50 AM | TR        | N   | Y       | N                     | Y   |
| 20       | ACG                            | 3131            | ACG3131 LEC                           | 514                           | 1                                   | LEC        | 12:00 PM   | 1:15 PM  | TR        | N   | Y       | N                     | Y   |
| 21       | ACG                            | 3141            | ACG3141 LEC                           | 199                           | 1                                   | LEC        | 12:00 PM   | 1:15 PM  | MW        | Y   | N       | Y                     | N   |
| 22       | ACG                            | 3141            | ACG3141 LEC                           | 215                           | 1                                   | LEC        | 3:00 PM    | 4:15 PM  | MW        | Υ   | N       | Y                     | N   |
| 23       | ACG                            | 3141            | ACG3141 LEC                           | 624                           | 1                                   | LEC        | 6:00 PM    | 8:50 PM  | W         | N   | N       | Y                     | N   |
| 24       | ACG                            | 3361            | ACG3361 LEC                           | 207                           | 1                                   | LEC        | 1:30 PM    | 2:45 PM  | MW        | Y   | N       | Y                     | N   |
| 25       | ACG                            | 3361            | ACG3361 LEC                           | 215                           | 1                                   | LEC        | 3:00 PM    | 4:15 PM  | MW        | Y   | N       | Y                     | N   |

October 8, 2007

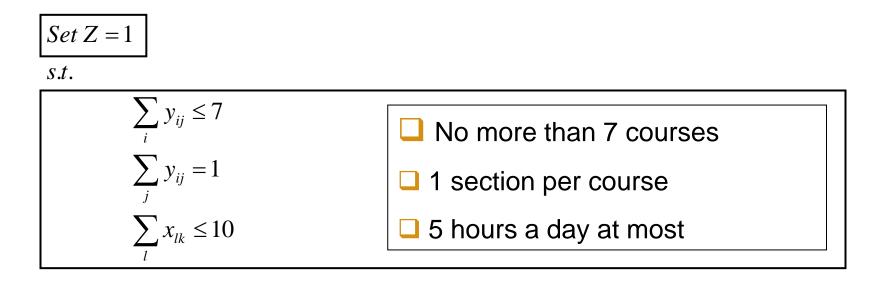
Academic Career Planning and Student Scheduling



# Program Requirement Data

#### Based on POS outputs

| Civil Engineering     | BS                          |           |       | Civil Engineerin    | ) BS                                 |           |       | Civil Engineering | BS                  |           |       |
|-----------------------|-----------------------------|-----------|-------|---------------------|--------------------------------------|-----------|-------|-------------------|---------------------|-----------|-------|
| 2005                  | Fall                        | 1         | 14    | 2006                | Spring                               | 1         | 14    | 2006              | Summer              |           | 0     |
| Course No.            | Course Name                 | Component |       | Course No.          | Course Name                          | Component |       | Course No.        | Course Name         | Component | -     |
| AMH 2010              | U S History 1492-1877       | LEC       | 3     | AMH 2020            | U S History 1877-present             | LEC       | 3     | Course no.        | Course name         | Component | Hours |
| MAC 2311              | Calculus I                  | LEC       | 4     | MAC 2312            | Calculus II                          | LEC       | 4     |                   |                     |           |       |
| SPC 1016              | Tech Presentations          | LEC       | 3     | PHY 2048            | Physics I                            | LEC       | 3     |                   |                     |           |       |
| ECO 2013              | Macroeconomics              | LEC       | 3     | PHY 2048            | Physics I<br>Physics I lab           | LAB       | 1     |                   |                     |           |       |
| EGN 1006              | Intro To Eng Prof           | LEC       |       | GEO1200             | Physical Geography                   | LEC       | 3     |                   |                     |           |       |
| EGIN 1006             |                             | LEC       |       | EGN 1007            | Eng Con & Meth                       | LEC       | <br>1 |                   |                     |           |       |
|                       |                             |           |       |                     |                                      |           |       |                   |                     |           |       |
| 2005                  | Fall                        | 2         | 16    | 2006                | Spring                               | 2         | 12    | 2006              | Summer              |           | 9     |
| Course No.            | Course Name                 |           | Hours | Course No.          | Course Name                          |           | Hours | Course No.        | Course Name         |           | Hours |
| MAC 2313              | Calculus III                | LEC       | 4     | MAP 2302            | Differential Equations               | LEC       | 3     | SUR 2101          | Surveying           | LEC       | 3     |
| CHM 2045C             | Chemistry Fundamentals I    | LEC       | 4     | CHM 2046            | Chemistry Fundamentals II            | LEC       | 3     | EGN 3331          | Mech of Materials   | LEC       | 3     |
| EGN 3613              | Engineering Econ            | LEC       | 2     | CHM 2046L           | Chemistry Fundamentals II Lab        | LAB       |       | ENV 3001          | Into to Environ Eng | LEC       | 3     |
| ENC 1101              | English Composition I       | LEC       | 3     | ENC 1102            | English Composition II               | LEC       | 3     |                   |                     |           |       |
| EGN 3310              | Engineering AnalysisStatics | LEC       | 3     | EGN 3321            | Engineering AnalysisDynamics         | LEC       | 3     |                   |                     |           |       |
|                       |                             |           |       | PHY 2049            | Physics II                           | LEC       | 3     |                   |                     |           |       |
|                       |                             |           |       | PHY 2049L           | Physics II Lab                       | LAB       |       |                   |                     |           |       |
|                       |                             |           |       |                     |                                      |           |       |                   |                     |           |       |
| 2005                  | Fall                        | 3         | 16    | 2006                | Spring                               | 3         | 16    | 2006              | Summer              |           | 0     |
| Course No.            | Course Name                 |           | Hours | Course No.          | Course Name                          |           | Hours | Course No.        | Course Name         |           | Hours |
| CVR 3201              | Eng Fluid Mechanics         | LEC       | 3     | CVR 4101C           | Hydrology                            | LEC       | 3     |                   |                     |           |       |
| CCE 4003              | Intro to Const Indus        | LEC       | 3     | CWR 4203C           | Hydraulics                           | LEC       | 3     |                   |                     |           |       |
| EGN 3343              | Thermodynamics              | LEC       | 3     | EGN 3373            | Principles of Electrical Engineering | LEC       | 3     |                   |                     |           |       |
| CES 4100C             | Structural Analysis I       | LEC       | 4     | FIL 1001            | Cinema Survey                        | LEC       | 3     |                   |                     |           |       |
| STA 3032              | Prob/Stats for Engrs        | LEC       | 3     | TTE 4004            | Transportation Engineering           | LEC       | 4     |                   |                     |           |       |
|                       |                             |           |       |                     |                                      |           |       |                   |                     |           |       |
| 2005                  | Fall                        | 4         | 14    | 2006                | Spring                               | 4         | 12    | 2006              | Summer              |           | 0     |
| Course No.            | Course Name                 |           | Hours | Course No.          | Course Name                          |           | Hours | Course No.        | Course Name         |           | Hours |
| ENV 4561              | Env Eng-Proc Design         | LEC       | 4     | CES 4702            | Reinforced Concrete                  | LEC       | 3     |                   |                     |           |       |
| CEG 4101C             | Geotechnical Engr           | LEC       | 4     | EGN 3365            | Str. & Prop Matis                    | LEC       | 3     |                   |                     |           |       |
| CES 4605              | Steel Structures            | LEC       | 3     | Approved Project De |                                      | LEC       | 3     |                   |                     |           |       |
| Approve Project Desig | gr Approve Project Design   | LEC       | 3     | ANT 2000            | General Anthropology                 | LEC       | 3     |                   |                     |           |       |
|                       |                             |           |       |                     |                                      |           |       |                   |                     |           |       |
|                       |                             |           |       |                     |                                      |           |       |                   |                     |           |       |




# **Optimization-based Scheduler**

- Student class schedule by a "set-covering" problem
  - Find the class sections that will "cover" the "set" of program requirements (courses)
- Constraints
  - □ No two sections can be scheduled at the same time
  - Exactly one section of each course must be scheduled during a week
  - Maximum of five hours of classes may be scheduled in a given day



# **Excel-Based IP Model**



$$y_{ij} = \begin{cases} 1 & \text{Section i of course j scheduled} \\ 0 & \text{Otherwise} \end{cases}$$
$$x_{lk} = \begin{cases} 1 & \text{Slot l of day k used} \\ 0 & \text{Otherwise} \end{cases}$$
$$x_{lk} : \text{Times}$$

y<sub>ij</sub>: Section i of course j

 $\mathbf{x}_{lk}$ : Time slot I in day k



# Excel Solver Setup

- Columns correspond to class sections offered at different times
- Rows correspond to half-hour time slots for each day of the week
- Cell values = 1 if class section is offered at that time or = 0 if section is not offered at that time
- Decision variable row cells = 1 if that section of the course is scheduled and = 0 otherwise
- SOLVER Add-in
  - Tools > Solver (go to Tools > Add-ins and check "Solver Add-in" if not loaded)
  - □ "Target cell" is the objective to be optimized
  - □ "Changing cells" are the decision variables
  - □ "Constraints" are the conditions to be satisfied



# Solver Setup

| 👱 Mie    | crosoft I            | Excel - S | olver Te       | mplate.x          |                 |                |               |                            |                         |              |           |                |           |             |              |               |         |      |                     |              |    |            |               |             | _ 8 ) |
|----------|----------------------|-----------|----------------|-------------------|-----------------|----------------|---------------|----------------------------|-------------------------|--------------|-----------|----------------|-----------|-------------|--------------|---------------|---------|------|---------------------|--------------|----|------------|---------------|-------------|-------|
| :2)      | <u>File E</u> d      | lit ⊻iew  | Insert         | Format            | <u>T</u> ools   | Data           | Window        | Help .                     | Ado <u>b</u> e PDF      | =            |           |                |           |             |              |               |         |      |                     |              |    |            | Type a questi | on for help | 8 :   |
| :        | ~ _                  |           | -              | -                 | -               | _              | _             | ~ 16                       | -                       | ALZII        | dilla 🚮   | 750/           |           | : 📖 🛛       |              | :0            | "." "_' |      | " ." " <b>.</b> " " | /* ***       | 1  |            |               |             |       |
| :        |                      | BIE       |                |                   |                 |                |               |                            |                         |              |           |                |           |             |              |               |         | ""*" |                     |              |    |            |               |             | _     |
| Arial    |                      |           | + 10 -         | B                 | U               |                | +a+           | \$ %                       | ° .00 .                 | .00          | *         | + 👌 +          | <u>A</u>  | 10          | ) - <u>1</u> | G -G [        | 21      |      | 書房                  | <u>a</u> 🙉 🗖 |    | Securit    | y   🚵 🛠       | 2 00        |       |
| -        | HK10                 | -         | fx             |                   |                 |                |               |                            |                         |              |           |                |           |             |              |               |         |      |                     |              | 2  |            |               |             |       |
|          | A                    | в         |                |                   | E               | F              | G             | н                          |                         | J            | К         |                | м         | N           | 0            | P             | Q       | B    | s                   | Т            | U  | V          | V             | X           | ( Z - |
| 1 S      | UBJECT               | -         | СНМ            | MAC               | MCB             | MCB            | MCB           | MCB                        | MCB                     | VOH          | VOH       | VOH            | VOH       | VOH         | VOH          |               | 0       |      |                     | 0 0          |    | 0 0        |               | 0           | / Z   |
| 2 C      | ATALOG               | 2210      | 2210           | 2253              | 3020C           | 3020L          | 3020L         | 3020L                      | 3020L                   | 2012         | 2012      | 2012           | 2012      | 2012        | 2012         |               | 0       | 0    | 0                   | 0 0          | )  | 0 0        | 0 0           | 0           | 0     |
| 3 C      | ourse I              | CHM2210 ( | CHM22101       | MAC2253           | MCB3020         | MCB3020        | ( MCB3020     | 0 MCB3020                  | 0 MCB3020               | VOH2012      | L VOH2012 | L VOH2012 L    | VOH2012   | L VOH2012   | L VOH2012    | ι             | 0       | 0    | 0                   | 0 0          | )  | 0 0        | 0 0           | 0           | 0     |
|          | ounter               | 1         | 1              | 1                 | 1               | 1              |               | 1 .                        | 1 .                     | 1 1          | 1         | 1              | 1         | 1           | 1            |               | 0       |      | •                   | 0 0          |    | 0 0        |               | 0           | 0     |
| _        | OMPON                |           | LEC            | LEC               | LEC             | LAB            | LAB           | LAB                        | LAB                     | LEC          | LEC       | LEC            | LEC       | LEC         | LEC          |               | 0       | *    | *                   | 0 0          | ·  | 0 0        |               | 0           | 0     |
|          | TART_TI              |           |                | 9:30 AM           |                 | 2:30 PM        | 5:00 PM       |                            | 11:30 AM                | 1:30 PM      | 3:00 PM   |                | 7:30 AM   | 9:00 AM     | 10:30 AM     |               | 0       |      | × .                 | 0 0          |    | 0 0        |               | 0           | 0     |
|          | leet_Day: I          |           | MVF<br>9-20 AM | M V F<br>19-20 AM | MVF<br>11-20 AM | M V<br>A 20 DM | MV<br>7-20 DM | M V<br>10-20 AM            | MV<br>120 DM            | TR<br>245 DM | TB        | M V<br>5:45 PM | TR        | TB 40.20 AM | TR           |               | 0       | *    | *                   | 0 0<br>0 0   | ·  | 0 0<br>0 0 |               | 0           | 0     |
| 9 E      |                      | 7:20 F M  | 3.20 MM        | 10:20 MINI        | 1620 AIM        | 7:20 F1M       | 7:20 MM       | 10:20 AIM                  | 620 M M                 | 2040 FTM     | 400 F1M   | 0040 1101      | 0040 MIVI | 10:20 AIVI  | 1040 AIM     |               | •       | •    | 0                   | ο U          | ,  | ο (        | , ,           | 0           | 0     |
| -        | imeCode              | 155       | 400            | 475               | 527             | 109            | 222           | 2 415                      | 5 573                   | 32           | : 123     | 197            | 307       | 7 446       | 5 532        | 2             | 0       | 0    | 0                   | 0 0          | )  | 0 0        | 0             | 0           | 0     |
|          | londay               | .50       |                |                   | 521             | 100            |               |                            |                         |              |           |                | 501       |             |              |               | -       | -    | -                   |              |    |            |               | -           | -     |
|          | 7:30 AM              | 0         | 0              | 0                 | 0               | 0              |               | ) (                        | ) (                     | 0            |           | 0              | 0         | ) (         | ) (          | )             | 0       | 0    | 0                   | 0 0          | )  | 0 0        | 0 0           | 0           | 0     |
| 13       | 8:00 AM              | 0         | 0              | 0                 | 0               | 0              | (             | ) (                        | ) (                     | 0            | (         | 0              | 0         | ) (         | ) (          | )             | 0       | 0    | 0                   | 0 0          | )  | 0 0        | 0             | 0           | 0     |
|          | 8:30 AM              | 0         | 0              | 0                 | 0               | 0              | (             | ) (                        | ) (                     | 0            | (         | 0              | 0         | ) (         | ) (          | )             | 0       | 0    | 0                   | 0 0          | )  | 0 0        | 0 0           | 0           | 0     |
|          | 9:00 AM              | 0         | 1              | ×                 | · ·             | · · ·          |               | ) ·                        | 1 0                     | 0            | (         | 0              | 0         | ) (         | ) (          | 1             | 0       | ×    | × .                 | 0 0          |    | 0 0        | · •           | 0           | 0     |
|          | 9:30 AM              | 0         | 1              | 0                 |                 |                |               | olver Para                 | ameters                 |              |           |                |           |             |              |               | ×I      | ~    | · ·                 | 0 0          | ·  | 0 0<br>0 0 | -             | 0           | 0     |
|          | 10:00 AM<br>10:30 AM | 0         | 0              |                   | 0               | · · ·          |               |                            | uniccers                |              |           |                |           |             |              |               | -       | *    | × .                 | 0 0<br>0 0   | e  | 0 0<br>0 0 |               | 0           | 0     |
|          | 11:00 AM             | 0         | 0              |                   |                 | 0              |               |                            | \$HK\$10                |              | •         |                |           |             |              | <u>5</u> olve | 1⊢      |      | *                   |              |    | 0 0        |               | 0           | 0     |
|          | 11:30 AM             | 0         | 0              |                   |                 | 0              |               | i <u>e</u> t Cell:         | <u>jonkoru</u>          |              |           |                |           |             |              |               |         | -    | •                   | 0 0          |    | 0 0        |               | 0           | 0     |
|          | 12:00 PM             | 0         | 0              | 0                 |                 |                |               | Equal To:                  | • <u>M</u> a            | ax ON        | 4in O     | Value of:      | 0         |             |              | Close         |         | 0    | 0                   | 0 0          | )  | 0 0        | ) 0           | 0           | 0     |
| 22       | 12:30 PM             | 0         | 0              | 0                 | 0               | 0              | F             | ly Changin                 | ng Variable             |              | -         | •              |           |             |              |               | -       | 0    | 0                   | 0 0          | )  | 0 0        | 0             | 0           | 0     |
| 23       | 1:00 PM              | 0         | 0              | ×                 | -               |                |               |                            | -                       | Cells.       |           |                | - 0       | uess        | 0            | ptions        | 1       | *    | *                   | 0 0          | e  | 0 0        | -             | 0           | 0     |
| 24       | 1:30 PM              | 0         | 0              |                   |                 |                |               | \$B\$9:\$GZ\$              | 59                      |              |           |                | <u> </u>  |             |              | puons         |         | ×    | × .                 | 0 0          | ·  | 0 0        |               | 0           | 0     |
|          | 2:00 PM              | 0         | 0              | 0                 | -               |                |               | Subject to                 | the Consti              | raints:      |           |                | Stope     | dard LP/Qu  | rodeotic     | _             | 1       | *    | *                   | 0 0<br>0 0   | •  | 0 0<br>0 0 |               | 0           | 0     |
|          | 2:30 PM<br>3:00 PM   | 0         | 0              | 0                 |                 | -              |               | <u>_</u> ,                 |                         |              |           |                |           | Jaru Leyqu  | Jaurauc      |               | - 1     |      | •                   | 0 0<br>0 0   |    | 0 0<br>0 0 |               | 0           | 0     |
|          | 3:30 PM              | 0         | 0              | 0                 | -               |                | 4             | \$B\$9:\$GZ\$              | ;9 = binar;             | /            |           | -              | - A       | Add         | Va           | riables       |         | *    | *                   | 0 0          | r  | 0 0        |               | 0           | 0     |
|          | 4:00 PM              | 1         | Ő              |                   |                 |                |               | \$HK\$112 <                |                         |              |           |                | 7         |             |              |               |         |      | •                   | 0 0          |    | 0 0        |               | 0           | ů     |
|          | 4:30 PM              | 1         | 0              |                   |                 | 1              |               |                            | 3HK\$145 <              |              |           |                | Ch        | ange        | Re           | eset All      |         | 0    | 0                   | 0 0          | )  | 0 0        | 0             | 0           | 0     |
|          | 5:00 PM              | 0         | 0              |                   | -               |                |               | βΗK\$12:\$⊢<br>\$HK\$146 < | HK\$43 <=<br>¢⊔ν¢Ω      | 1            |           |                |           |             |              |               | -       | ·    | *                   | 0 0          | )  | 0 0        | 0             | 0           | 0     |
|          | 5:30 PM              | 0         | 0              | 0                 |                 |                |               |                            | <≕ ≱⊓⊾≱ο<br>\$HK\$179 < | = 1          |           |                | De        | elete       |              | Help          |         | *    | *                   | 0 0          | e  | 0 0        |               | 0           | 0     |
|          | 6:00 PM              | 0         | 0              |                   | -               |                |               | pintipi 1014               |                         |              |           |                |           |             |              |               | -       |      | *                   | 0 0          | ·  | 0 0        |               | 0           | 0     |
|          | 6:30 PM<br>7:00 PM   | 0         | 0              |                   |                 |                |               | 1 0                        | ) (                     | 0            | 1 (       | 0              | 0         | n r         | n r          | 1             | 0       | *    | *                   | 0 0<br>0 0   | e  | 0 0<br>0 0 |               | 0           | 0     |
|          | 7:00 PM              | 0         | 0              |                   |                 |                |               |                            |                         |              |           | -              |           |             |              |               | 0       |      | *                   | 0 C          |    |            |               | 0           | 0     |
|          | 8:00 PM              | 0         | Ő              | -                 |                 | -              |               |                            |                         |              |           | -              |           | · ·         |              |               | 0       | *    | *                   | 0 0          | e  | 0 0        |               | 0           | 0     |
|          | 8:30 PM              | 0         | 0              |                   |                 |                | -             |                            | ) (                     |              | -         |                |           |             | 0 0          | )             | 0       | 0    | 0                   | 0 0          | )  | 0 0        |               | 0           | 0     |
|          | 9:00 PM              | 0         | 0              | 0                 | 0               | 0              | 0             | ) (                        | ) (                     | 0            | (         | 0              | 0         | ) (         | ) (          | )             | 0       | 0    | 0                   | 0 0          | )  | 0 0        | 0             | 0           | 0     |
|          | 9:30 PM              | 0         | 0              | · ·               | -               |                |               | · ·                        | ) (                     |              |           |                |           | · ·         | · ·          |               | 0       | *    | *                   | 0 0          | e  | 0 0        |               | 0           | 0     |
|          | 10:00 PM             | 0         | 0              |                   |                 |                |               |                            | ) (                     |              |           |                |           | · ·         |              | ·             | 0       |      | × .                 | 0 0          |    | 0 0        |               | 0           | 0     |
|          | 10:30 PM             | 0         | 0              | 0                 |                 |                |               | · ·                        | 0 0                     |              |           |                |           | · ·         | · ·          |               | 0       | *    | *                   | 0 0<br>0 0   | ·  | 0 0<br>0 0 |               | 0           | 0     |
| 43<br>44 | 11:00 PM             | U         | 0              | 0                 | U U             | 0              | ղ ւ           | ղ լ                        | ) (                     | 0            | ין נ      | 'I U           | U         | ղ լ         | ) (          | 'I            | 0       | 0    | 0                   | սլ (         | 'I | ս լ        | , U           | U           | 0     |
|          | uesdau               |           |                |                   |                 |                |               |                            |                         |              |           |                |           |             |              |               |         |      |                     |              |    |            |               |             |       |
|          | 7:30 AM              | 0         | 0              | 0                 | 0               | 0              | 0             | ) (                        | ) (                     | 0            |           | 0              | 0         | ) (         | ) (          | 1             | 0       | 0    | 0                   | 0 0          | )  | 0 0        | ) 0           | 0           | 0 .   |
|          |                      |           |                | ,                 | Advance         |                |               |                            |                         |              | `         | echni          |           |             |              |               |         |      |                     |              |    |            | i i           |             |       |

Developing rechnology Solutions to Support

Academic Career Planning and Student Scheduling



# UCF-CS GUIs & Outputs

| icrosoft Excel -<br>Najor  | SUMMARY REPORT                        |                      |            |                       |                        |          |     |
|----------------------------|---------------------------------------|----------------------|------------|-----------------------|------------------------|----------|-----|
|                            |                                       |                      |            |                       |                        |          |     |
|                            | Scheduling Feasiability - Undergrad   | uate Progra          | ms in      | Spring - 2            |                        |          |     |
| Estimated #<br>Schedules ç | Program Title                         | Number of<br>Courses | Status     | Expected<br>Schedules | Available<br>Schedules | Comments |     |
| Details:                   | Accounting                            | 4                    | Feasible   | 30                    | 30                     |          |     |
| Schedule                   | Actuarial Science                     | 5                    | Feasible   |                       | 15                     |          |     |
| #                          | Aerospace Engineering BS              | 5                    | Feasible   |                       | 19                     |          | LEC |
| 1                          | Biology BS                            | 5                    | Feasible   |                       | 15                     |          | 1   |
| 2                          | Chemistry                             | 5                    | Feasible   |                       | 31                     |          | 1   |
| 3                          | Computer Engineering BS               | 4                    | Infeasible |                       | 0                      |          |     |
|                            | Criminal Justice BA - BS 2005-06      | 2                    | Feasible   |                       | 10                     |          | · · |
| 4                          | Early Childhood Education BS          | 2                    | Feasible   |                       | 21                     |          | 1   |
| 5                          | Electrical Engineering                | 5                    | Infeasible |                       | 0                      |          | 1   |
| 6                          | Elementary Education BS               | 3                    | Feasible   |                       | 23                     |          | 1   |
| 7                          | English - Creative Writing BA         | 3                    | Feasible   | 8                     | 8                      |          | 1   |
| 8                          | Finance BS BA 2006-06                 | 4                    | Feasible   |                       | 17                     |          | 1   |
| 9                          | Forensic Science BS                   | 3                    | Feasible   | 18                    | 17                     |          | 1   |
| 10                         | General Business BS                   | 3                    | Feasible   | 11                    | 11                     |          | 1   |
|                            | Health Service Administration BS      | 4                    | Feasible   | 25                    | 25                     |          |     |
| 11                         | Information Systems Technology        | 5                    | Feasible   | 21                    | 19                     |          | 1   |
| 12                         | Legal Studies BS                      | 4                    | Feasible   | 24                    | 24                     |          | 1   |
| 13                         | Management Information Systems        | 3                    | Feasible   | 14                    | 14                     |          | 1   |
| 14                         | Marketing BS BA                       | 4                    | Feasible   | 17                    | 17                     |          | 1   |
| 15                         | Math - Applie BS                      | 5                    | Feasible   | 39                    | 34                     |          | 1   |
| 16                         | Mechanical EngineeringEnergy Syste    |                      | Feasible   | 17                    | 15                     |          | 1   |
| 17                         | Molecular Biology and Microbiology BS |                      | Feasible   | 27                    | 21                     |          | 1   |
| 18                         | Modern Language Combination           | 2                    | Feasible   | 7                     | 7                      |          | -1  |
| -                          | Political Science BA                  | 3                    | Feasible   |                       | 21                     |          | -   |
| 19                         | Psychology BS                         | 3                    | Feasible   |                       | 25                     |          | 1   |
| 20                         | Psychology BA                         | 3                    | Feasible   |                       | 18                     |          | 1   |
|                            | Public Administration BS              | 2                    | Feasible   |                       | 16                     |          |     |
| N N Z Eall Code            | Social Science Education BS           | 4                    | Feasible   | 32                    | 32                     |          |     |

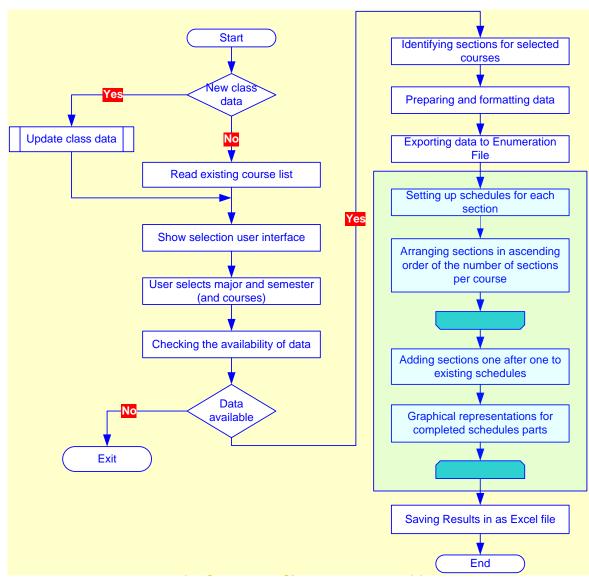
Academic Career Planning and Student Scheduling



# Solver Pros and Cons

Pros

- Generates feasible solutions
- Modifiable to add other constraints (e.g., minimum time between classes, exclude a certain day)
- Relatively easy to customize output
- Cons
  - Requires mathematical understanding to set up
  - Requires careful mapping of class schedule data
  - Relatively long execution times
  - Potential automation connection problems
  - □ Need to "trick" the set up to generate alternate schedules




# Enumeration Approach

- Potential for reducing processing time
- Use existing data structure
- Constructive generation of student class schedule
  - □ Arrange courses assendingly by number of sections
  - □ Schedule most restrictive class first
  - Add next most restrictive class while satisfying time conflict constraints
- Number of feasible schedules is limited by the amount of time to be spent or number specified in advance
- Output format is same as for Solver

# Enumeration Approach





Academic Career Planning and Student Scheduling



# **Enumeration Pros and Cons**

#### Pros

- □ Easier to set up than Solver
- □ Faster (for current problem)
- Less automation connection problems

#### Cons

- □ Rigid structure—must be recoded for customized results
- Must be run until finished to get any solutions
- □ Limited number of feasible solutions as coded



# SAS vs. Excel

- POS Planner used SAS and Excel
- UCF-CS used Excel
- Both used IP
- SAS offers more flexibility and tools to manipulate data
- SAS generates the optimization model AND solves it
- SAS lacks ease of use in reporting and presenting capabilities
- Excel offers user interfaces and presentation capabilities
- Excel communicates with other Office and Windows applications
- Solver is rigid and requires complicated Excel preparation
- SAS and Excel work together smoothly



# **Contact Information**

- Dr. Robert L. Armacost, Higher Education Assessment and Planning Technologies
   armacost@mail.ucf.edu
- Ms. Sandra Archer, University of Central Florida
  archer@mail.ucf.edu; http://uaps.ucf.edu
- Mr. Magdy Helal, University of Central Florida
  mhelal@mail.ucf.edu

#### Presentation available online: http://uaps.ucf.edu